FEATURES:

- Ref input is 3.3 V tolerant
- 4 pairs of programmable skew outputs
- Low skew: 185ps same pair, 250ps all outputs
- Selectable positive or negative edge synchronization:

Excellent for DSP applications

- Synchronous output enable
- Input frequency:
- Std: 2MHz to 160MHz
- A: 2 MHz to 200 MHz
- Output frequency:
- Std: 6MHz to 160 MHz
- A: 6 MHz to 200 MHz
- 3-level inputs for skew and PLL range control
- 3-level inputs for feedback divide selection multiply / divide ratios of (1-6, 8, 10, 12) I (2, 4)
- PLL bypass for DC testing
- External feedback, internal loop filter
- 12mA balanced drive outputs
- Low Jitter: <100ps cycle-to-cycle
- Power-down mode
- Lock indicator
- Standard and A speed grades
- Available in TQFP package

DESCRIPTION:

The IDT5T995 is a high fanout 2.5V PLL based clock driver intended for high performance computing and data-communications applications. A key feature of the programmable skew is the ability of outputs to lead or lag the REF inputsignal. The IDT5T995 has eight programmable skew outputs in four banks of 2 . Skew is controlled by 3-level input signals that may be hard-wired to appropriate high-mid-low levels.

The feedback input allows divide-by-functionality from 1 to 12 through the use of the $\operatorname{DS}[1: 0]$ inputs. This provides the user with frequency multiplication from 1 to 12 without using divided outputs for feedback.

When the $\overline{\text { sOE }}$ pin is held low, all the outputs are synchronously enabled. However, if $\overline{\mathrm{SOE}}$ is held high, all the outputs except 2 Q 0 and 2 Q 1 are synchronously disabled. The LOCK output asserts to indicate when Phase Lock has been achieved.

Furthermore, when PE is held high, all the outputs are synchronized with the positive edge of the REF clock input. When PE is held low, all the outputs are synchronized with the negative edge of REF. The IDT5T995 has LVTTL outputs with 12mA balanced drive outputs.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

TQFP
TOP VIEW

ABSOLUTEMAXIMUM RATINGS(1)

Symbol	Description		Max	Unit
VdDQ, Vdd	Supply Voltage to Ground		-0.5 to +4.6	V
VI	DC Input Voltage		-0.5 to VdD +0.5	V
	REF Input Voltage		-0.5 to +4.6	V
	Maximum Power Dissipation	$\mathrm{TA}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	0.7	W
		TA $=55^{\circ} \mathrm{C}$	1.1	
Tstg	Storage Temperature Range		-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses beyond those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V} \mathbb{N}=\mathrm{OV}\right)$

Parameter	Description	Typ.	Max.	Unit
CIN	InputCapacitance	5	7	pF

NOTE:

1. Capacitance applies to all inputs except TEST, FS , $\mathrm{nF}[1: 0]$, and $\mathrm{DS}[1: 0]$.

PIN DESCRIPTION

Pin Name	Type	Description
REF	IN	Reference Clock Input
FB	IN	FeedbackInput
TEST ${ }^{(1)}$	IN	When MID or HIGH, disables PLL (except for conditions of Note 1). REF goes to all outputs. Skew Selections (See Control Summary Table) remain in effect. Set LOW for normal operation.
$\overline{\mathrm{SOE}}^{(1)}$	IN	Synchronous Output Enable. When HIGH, it stops clock outputs (except 2Q0 and 2Q1) in aLOW state (for PE = H) - 2Q0 and 2Q1 may be used as the feedback signal to maintain phase lock. When TEST is held at MID level and $\overline{\text { SOE is HIGH, the nF[1:0] pins act as output }}$ disable controls for individual banks when $\mathrm{nF}[1: 0]=\mathrm{LL}$. Set $\overline{\mathrm{SOE}}$ LOW for normal operation (has internal pull-down).
PE	IN	Selectable positive ornegative edge control. WhenLOW/HIGHtheoutputsaresynchronized withthenegative/positive edge ofthe reference clock (has internal pull-up).
nF[1:0]	IN	3 -level inputs for selecting 1 of 9 skew taps or frequency functions
FS	IN	Selects appropriate oscillator circuitbased on anticipated frequency range. (See Programmable Skew Range.)
nQ[1:0]	OUT	Four banks oftwo outputs with programmable skew
DS[1:0]	IN	3-level inputs for feedback divider selection
$\overline{\text { PD }}$	IN	Power down control. Shuts off entire chip when LOW (has internal pull-up).
LOCK	OUT	PLL lock indication signal. HIGH indicates lock. LOW indicates that the PLL is not locked and outputs may not be synchronized to the inputs.
VDDQ	PWR	Power supply for output buffers
VDD	PWR	Power supply for phase locked loop, lock output, and other internal circuitry
GND	PWR	Ground

NOTE:

1. When TEST $=$ MID and $\overline{\mathrm{sOE}}=\mathrm{HIGH}, \mathrm{PLL}$ remains active with $\mathrm{nF}[1: 0]=\mathrm{LL}$ functioning as an output disable control for individual output banks. Skew selections remain in effect unless $\mathrm{nF}[1: 0]=\mathrm{LL}$.

PROGRAMMABLE SKEW

Output skew with respect to the REF input is adjustable to compensate for PCB trace delays, backplane propagation delays or to accommodate requirements for special timing relationships between clocked components. Skew is selectable as a multiple of a time unit (tu) which ranges from 782ps to 1.5625 ns for Standard version and 6.25 ps to $1.3 n s$ for A version (see Programmable Skew Range and Resolution Table). There are nine skew configurations available for each output pair. These con-
figurations are chosen by the $\mathrm{nF} 1: 0$ control pins. In order to minimize the number of control pins, 3-level inputs (HIGH-MID-LOW) are used, they are intended for but not restricted to hard-wiring. Undriven 3-level inputs default to the MID level. Where programmable skew is not a requirement, the control pins can be left open for the zero skew default setting. The Control Summary Table shows how to select specific skew taps by using the $\mathrm{nF} 1: 0$ control pins.

An internal loop filter moderates the response of the VCO to the phase detector. The loop filter transfer function has been chosen to provide minimal jitter (or frequency variation) while still providing accurate responses to input frequency changes.

PROGRAMMABLE SKEW RANGE AND RESOLUTION TABLE

Timing Unit Calculation(tu)	IDT5T995			IDT5T995A			Comments
	FS = LOW	FS = MID	FS = HIGH	FS = LOW	FS = MID	FS = HIGH	
	1/(32 \times Fnom)	1/(16 x FNom)	1/(8x FNom)	1/(32 x Fnom)	1/(16 x FNom)	1/(8x FNom)	
VCO Frequency Range (Fnom) ${ }^{(1,2)}$	24 to 40MHz	40 to 80MHz	80 to 160MHz	24 to 50MHz	48 to 100MHz	96 to 200MHz	
Skew Adjustment Range ${ }^{(3)}$ MaxAdjustment:	$\pm 7.8125 \mathrm{~ns}$	$\pm 9.375 \mathrm{~ns}$	$\pm 9.375 \mathrm{~ns}$	$\pm 7.8125 \mathrm{~ns}$	$\pm 7.8125 \mathrm{~ns}$	$\pm 7.8125 \mathrm{~ns}$	ns
	$\pm 67.5^{\circ}$	$\pm 135^{\circ}$	$\pm 270^{\circ}$	$\pm 67.5^{\circ}$	$\pm 135^{\circ}$	$\pm 270^{\circ}$	Phase Degrees
	$\pm 18.75 \%$	$\pm 37.5 \%$	$\pm 75 \%$	$\pm 18.75 \%$	$\pm 37.5 \%$	$\pm 75 \%$	\% of Cycle Time
Example 1, FNom $=25 \mathrm{MHz}$	$\mathrm{tu}=1.25 \mathrm{~ns}$	-	-	$\mathrm{tu}=1.25 \mathrm{~ns}$	-	-	
Example 2, Fnom $=37.5 \mathrm{MHz}$	tu $=0.833 \mathrm{~ns}$	-	-	$\mathrm{tu}=0.833 \mathrm{~ns}$	-	-	
Example 3, FNom $=50 \mathrm{MHz}$	-	$\mathrm{tu}=1.25 \mathrm{~ns}$	-	$\mathrm{tu}=0.625 \mathrm{~ns}$	$\mathrm{tu}=1.25 \mathrm{~ns}$	-	
Example 4, FNom $=75 \mathrm{MHz}$	-	tu=0.833ns	-	-	tu $=0.833 \mathrm{~ns}$	-	
Example 5, FNOM $=100 \mathrm{MHz}$	-	-	$\mathrm{tu}=1.25 \mathrm{~ns}$	-	$\mathrm{tu}=0.625 \mathrm{~ns}$	$\mathrm{tu}=1.25 \mathrm{~ns}$	
Example 6, FNom $=150 \mathrm{MHz}$	-	-	tu $=0.833 \mathrm{~ns}$	-	-	tu $=0.833 \mathrm{~ns}$	
Example 7, FNom $=200 \mathrm{MHz}$	-	-	-	-	-	$\mathrm{tu}=0.625 \mathrm{~ns}$	

NOTES:

1. The device may be operated outside recommended frequency ranges without damage, but functional operation is not guaranteed.
2. The level to be set on FS is determined by the nominal operating frequency of the VCO and Time Unit Generator. The VCO frequency always appears at 1Q1:0, 2Q1:0, and the higher outputs when they are operated in their undivided modes. The frequency appearing at the REF and FB inputs will be Fnom when the output connected to FB is undivided and $\operatorname{DS}[1: 0]=\mathrm{MM}$. The frequency of the REF and FB inputs will be FNom $/ 2$ or Fnom $/ 4$ when the part is configured for frequency multiplication by using a divided output as the FB input and setting $\operatorname{DS}[1: 0]=\mathrm{MM}$. Using the DS[1:0] inputs allows a different method for frequency multiplication (see Divide Selection Table).
3. Skew adjustment range assumes that a zero skew output is used for feedback. If a skewed Q output is used for feedback, then adjustment range will be greater. For example if a 4 tu skewed output is used for feedback, all other outputs will be skewed -4tu in addition to whatever skew value is programmed for those outputs. 'Max adjustment' range applies to output pairs 3 and 4 where ± 6 tu skew adjustment is possible and at the lowest Fnom value.

DIVIDE SELECTION TABLE

DS [1:0]	FB Divide-by-n	Permitted Output Divide-by-n connected to FBin ${ }^{(1)}$
\amalg	2	1 or 2
LM	3	1
LH	4	1,2, or 4
ML	5	1 or 2
MM	1	1,2, or 4
MH	6	1 or 2
HL	8	1 or 2
HM	10	1
HH	12	1

NOTE:

1. Permissible output division ratios connected to FB. The frequency of the REF input will be Fnom/N when the part is configured for frequency multiplication by using an undivided output for FB and setting $\mathrm{DS}[1: 0]$ to $\mathrm{N}(\mathrm{N}=1-6,8,10,12)$.

CONTROL SUMMARY TABLE FOR FEEDBACK SIGNALS

nF1:0	Skew (Pair \#1, \#2)	Skew (Pair \#3)	Skew (Pair \#4)
LL ${ }^{(1)}$	-4tu	Divide by 2	Divide by 2
LM	-3tu	-6tu	-6tu
LH	-2tu	-4tu	-4tu
ML	-1tu	-2tu	-2tu
M M	Zero Skew	Zero Skew	Zero Skew
M H	1tu	2tu	2 tu
HL	2 tu	4tu	4tu
HM	3 L	6 u	6 tv
HH	4tu	Divide by 4	Inverted ${ }^{(2)}$

NOTES:

1. LL disables outputs if TEST $=$ MID and $\overline{\mathrm{SOE}}=\mathrm{HIGH}$,
2. When pair \#4 is set to HH (inverted), $\overline{\mathrm{SOE}}$ disables pair \#4 HIGH when PE $=$ HIGH, $\overline{\mathrm{SOE}}$ disables pair \#4 LOW when PE $=$ LOW.

RECOMMENDEDOPERATING RANGE

Symbol	Description	Min.	Typ.	Max.	Unit
VDD/VDDQ	Power Supply Voltage	2.3	2.5	2.7	V
TA_{A}	AmbientOperatingTemperature	-40	+25	+85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter	Conditions	Min.	Max.	Unit
VIH	Input HIGH Voltage	Guaranteed Logic HIGH (REF, FB Inputs Only)	2	-	V
VIL	InputLOW Voltage	Guaranteed Logic LOW (REF, FB Inputs Only)	-	0.7	V
VIHH	Input HIGH Voltage ${ }^{(1)}$	3-Level Inputs Only	VDD-0.4	-	V
Vimm	InputMID Voltage ${ }^{(1)}$	3-Level Inputs Only	Vod/2-0.2	$\mathrm{Vdo} / 2+0.2$	V
VILL	InputLOWVoltage ${ }^{(1)}$	3-Level Inputs Only	-	0.4	V
IIN	InputLeakageCurrent (REF, FB Inputs Only)	$\begin{aligned} & \text { VIN }=\text { VDD or GND } \\ & V_{D D}=M a x . \end{aligned}$	-5	+5	$\mu \mathrm{A}$
13	3-Level Input DC Current (TEST, FS, nF[1:0], DS[1:0])	VIN = VDD \quad HIGH Level	-	+200	$\mu \mathrm{A}$
		VIN $=$ Vod/2 MID Level	-50	+50	
		VIN $=$ GND LOW Level	-200	-	
IPU	Input Pull-Up Current (PE, $\overline{\mathrm{PD}})$	VDD = Max., VIN = GND	-25	-	$\mu \mathrm{A}$
IPD	Input Pull-Down Current ($\overline{\mathrm{SOE}})$	$V_{D D}=M a x ., V_{I N}=V_{D D}$	-	+100	$\mu \mathrm{A}$
Vor	Output HIGH Voltage	$\mathrm{V}_{\mathrm{DD}}=$ Min., $\mathrm{IOH}=-2 \mathrm{~mA}$ (LOCK Output)	2	-	V
		$\mathrm{V}_{\mathrm{DDQ}}=$ Min., $\mathrm{IOH}=-12 \mathrm{~mA}$ (nQ[1:0] Outputs)	2	-	
Vol	OutputLOWVoltage	$\mathrm{V}_{\mathrm{DD}}=$ Min., IOL $=2 \mathrm{~mA}$ (LOCK Output)	-	0.4	V
		VDDQ = Min., IoL = 12mA (nQ[1:0] Outputs)	-	0.4	

NOTE:

1. These inputs are normally wired to $\mathrm{VDD}, \mathrm{GND}$, or unconnected. Internal termination resistors bias unconnected inputs to $\mathrm{VDD} / 2$. If these inputs are switched, the function and timing of the outputs may be glitched, and the PLL may require an additional tlock time before all datasheet limits are achieved.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	TestConditions ${ }^{(1)}$		5 T 995		5T995A		Unit
				Typ. ${ }^{(2)}$	Max.	Typ. ${ }^{(2)}$	Max.	
IDDQ	Quiescent Power Supply Current	$\begin{aligned} & \text { VDD = Max., TEST }=\text { MID, REF }=\text { LOW, } \\ & \text { PE }=\text { LOW, } \overline{\text { SOE }}=\text { LOW, } \overline{P D}=\mathrm{HIGH} \\ & \text { FS }=\text { MID, All outputs unloaded } \end{aligned}$		20	30	20	30	mA
IDDPD	Power Down Current			-	25	-	25	$\mu \mathrm{A}$
$\Delta I D D$	Power Supply Current per Input HIGH (REF and FB inputs only)	$\begin{aligned} & \text { VIN }=2.3 \mathrm{~V}, \mathrm{VDD}=\mathrm{Max} ., \overline{\mathrm{PD}}=\mathrm{LOW} \\ & \mathrm{TEST}=\mathrm{HIGH} \end{aligned}$		1	30	1	30	$\mu \mathrm{A}$
IDDD	Dynamic Power Supply Current per Output	FS = L		190	290	190	290	$\mu \mathrm{A} / \mathrm{MHz}$
		FS $=\mathrm{M}$		150	230	150	230	
		FS $=\mathrm{H}$		130	200	130	200	
Ітот	Total Power Supply Current	FS = L	Fvco $=40 \mathrm{MHz}, \mathrm{CL}=0 \mathrm{pF}$	49	-	-	-	mA
			Fvco $=50 \mathrm{MHz}, \mathrm{CL}=0 \mathrm{pF}$	-	-	56	-	
		$F S=M$	Fvco $=80 \mathrm{MHz}, \mathrm{CL}=0 \mathrm{pF}$	66	-	-	-	
			$\mathrm{Fvco}=100 \mathrm{MHz}, \mathrm{CL}=0 \mathrm{pF}$	-	-	80	-	
		$F S=H$	$\mathrm{FVCo}=160 \mathrm{MHz}, \mathrm{CL}=0 \mathrm{pF}$	103	-	-	-	
			Fvco $=200 \mathrm{MHz}, \mathrm{CL}=0 \mathrm{pF}$	-	-	125	-	

NOTES:

1. Measurements are for divide-by-1 outputs, $n \mathrm{FF}[1: 0]=\mathrm{MM}$, and $\mathrm{DS}[1: 0]=\mathrm{MM}$.
2. For nominal voltage and temperature.

INPUTTIMING REQUIREMENTS

Symbol	Description ${ }^{(1)}$		57995		5T995A		Unit
			Min.	Max.	Min.	Max.	
tR, tF	Maximum input rise and fall times, 0.7 V to 1.7V		-	10	-	10	ns/V
tPWC	Input clock pulse, HIGH or LOW		2	-	2	-	ns
DH	Input duty cycle		10	90	10	90	\%
Fref	Referenceclockinputfrequency	FS = LOW	2	40	2	50	MHz
		FS = MID	3.33	80	4	100	
		FS $=$ HIGH	6.67	160	8	200	

NOTE:

1. Where pulse width implied by DH is less than tpwc limit, tpwc limit applies.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter	5 T995			5T995A			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Fnom	VCO Frequency Range	See Programmable SkewRange and Resolution Table						
trPWH	REF Pulse Width HIGH ${ }^{(1)}$	2	-	-	2	-	-	ns
trPWL	REF Pulse Width LOW ${ }^{(1)}$	2	-	-	2	-	-	ns
tu	Programmable Skew Time Unit	See Control Summary Table						
tSKEWPR	Zero Output Matched-Pair Skew (xQ0, xQ1) ${ }^{(2,3)}$	-	50	185	-	50	185	ps
tskewo	Zero OutputSkew (All Outputs) ${ }^{(4)}$	-	0.1	0.25	-	0.1	0.25	ns
tSkEW1	Output Skew (Rise-Rise, Fall-Fall, Same Class Outputs) ${ }^{(5)}$	-	0.1	0.25	-	0.1	0.25	ns
tSkEW2	OutputSkew (Rise-Fall, Nominal-Inverted, Divided-Divided) ${ }^{(5)}$	-	0.2	0.5	-	0.2	0.5	ns
tSkEw3	OutputSkew (Rise-Rise, Fall-Fall, Different Class Outputs) ${ }^{(5)}$	-	0.15	0.5	-	0.15	0.5	ns
tSkEW4	OutputSkew (Rise-Fall, Nominal-Divided, Divided-Inverted) ${ }^{(2)}$	-	0.3	0.9	-	0.3	0.9	ns
tDEV	Device-to-Device Skew ${ }^{(2,6)}$	-	-	0.75	-	-	0.75	ns
$t^{\text {t }}$ ($)$ 1-3	Static Phase Offset (FS = L, M, H) (FB Divide-by-n = 1, 2, 3) ${ }^{(7)}$	-0.3	-	0.3	-0.25	-	0.25	ns
t(p) H	Static Phase Offset (FS = H) ${ }^{(7)}$	-0.5	-	0.5	-0.25	-	0.25	ns
t(p)M	Static Phase Offset (FS = M $)^{(7)}$	-0.7	-	0.7	-0.5	-	0.5	ns
t (¢) 1 1-6	Static Phase Offset (FS = L) (FB Divide-by-n = 1, 2, 3, 4, 5, 6) ${ }^{(7)}$	-0.7	-	0.7	-0.7	-	0.7	ns
$\mathrm{t}($) $) 8-12$	Static Phase Offset (FS = L) (FB Divide-by-n = 8, 10, 12) ${ }^{(7)}$	-1	-	1	-1	-	1	ns
tobcv	Output Duty Cycle Variation from 50\%	-1	-	1	-1	-	1	ns
tPWH	Output HIGH Time Deviation from 50\% ${ }^{(8)}$	-	-	1.5	-	-	1.5	ns
tPWL	Output LOW Time Deviation from 50\% ${ }^{(9)}$	-	-	2	-	-	2	ns
torise	Output Rise Time	0.15	0.7	1.5	0.15	0.7	1.5	ns
tofall	OutputFall Time	0.15	0.7	1.5	0.15	0.7	1.5	ns
tlock	PLL Lock Time ${ }^{(10,11)}$	-	-	0.5	-	-	0.5	ms
tccje	Cycle-to-CycleOutput Jitter (peak-to-peak) (divide by 1 output frequency, FS = H, FB divide-by-n=1,2)	-	-	100	-	-	100	
tcCJHA	Cycle-to-Cycle Output Jitter (peak-to-peak) (divide by 1 output frequency, FS = H, FB divide-by-n=any)	-	-	150	-	-	150	
tccum	Cycle-to-Cycle Output Jitter(peak-to-peak) (divide by 1 output frequency, FS = M)	-	-	200	-	-	150	ps
tccul	Cycle-to-Cycle Output Jitter (peak-to-peak) (divide by 1 output frequency, FS = L, Fref > 3MHz)	-	-	200	-	-	200	
tcCula	Cycle-to-Cycle Output Jitter (peak-to-peak) (divide by 1 output frequency, FS = L, Fref < 3MHz)	-	-	300	-	-	300	

NOTES:

1. Refer to Input Timing Requirements table for more detail.
2. Skew is the time between the earliest and the latest output transition among all outputs for which the same tu delay has been selected when all are loaded with the specified load.
3. tSKEWPR is the skew between a pair of outputs ($\mathrm{xQ0}$ and $\mathrm{xQ1}$) when all eight outputs are selected for Otu.
4. tsk(0) is the skew between outputs when they are selected for Otu.
5. There are 3 classes of outputs: Nominal (multiple of tu delay), Inverted ($4 Q 0$ and $4 Q 1$ only with $4 F 0=4 F 1=H I G H$), and Divided ($3 Q x$ and $4 Q x$ only in Divide-by-2 or Divide-by-4 mode). Test condition: $\mathrm{nF0} 0: 1=\mathrm{MM}$ is set on unused outputs.
6. tDev is the output-to-output skew between any two devices operating under the same conditions (VDDQ, Vdd, ambient temperature, air flow, etc.)
7. $t \phi$ is measured with REF input rise and fall times (from 0.7 V to 1.7 V) of 0.5 ns . Measured from 1.25 V on REF to 1.25 V on FB.
8. Measured at 1.7 V .
9. Measured at 0.7 V .
10. tlock is the time that is required before synchronization is achieved. This specification is valid only after Vdd/VdDQ is stable and within normal operating limits. This parameter is measured from the application of a new signal or frequency at REF or FB until tpD is within specified limits.
11. Lock detector may be unreliable for input frequencies less than approximately 4 MHz , or for input signals which contain significant jitter.

AC TEST LOADS AND WAVEFORMS

For LOCK output
For all other outputs

2.5V Output Waveform

LVTTL Input Test Waveform

AC TIMING DIAGRAM

NOTES:
PE: The AC Timing Diagram applies to $P E=V D D$. For $P E=G N D$, the negative edge of $F B$ aligns with the negative edge of REF, divided outputs change on the negative edge of REF, and the positive edges of the divide-by-2 and the divide-by-4 signals align.
Skew: The time between the earliest and the latest output transition among all outputs for which the same to delay has been selected when all are loaded with 20pF and terminated with 75Ω to $\mathrm{VDDq} / 2$.
tskewpr: The skew between a pair of outputs ($\mathrm{XQ} \mathrm{Q}_{0}$ and XQ_{1}) when all eight outputs are selected for Otu.
tskewo: The skew between outputs when they are selected for Otu.
tDEV: The output-to-output skew between any two devices operating under the same conditions (VDDQ, VDD, ambient temperature, air flow, etc.)
todcv: The deviation of the output from a 50% duty cycle. Output pulse width variations are included in tskew2 and tskew4 specifications.
tpWH is measured at 1.7 V .
tpWL is measured at 0.7 V .
torise and tofall are measured between 0.7 V and 1.7 V .
tlock: The time that is required before synchronization is achieved. This specification is valid only after VDD/VDDQ is stable and within normal operating limits. This parameter is measured from the application of a new signal or frequency at REF or FB until tpD is within specified limits.

ORDERINGINFORMATION

2975 Stender Way
Santa Clara, CA 95054
for SALES:
800-345-7015 or 408-727-6116
fax: 408-492-8674
www.idt.com
for Tech Support:
logichelp@idt.com
(408) 654-6459

